A Second Order Finite Difference Approximation for the Fractional Diffusion Equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite difference Schemes for Variable-Order Time fractional Diffusion equation

Variable-order fractional diffusion equation model is a recently developed and promising approach to characterize time-dependent or concentration-dependent anomalous diffusion, or diffusion process in inhomogeneous porous media. To further study the properties of variableorder time fractional subdiffusion equation models, the efficient numerical schemes are urgently needed. This paper investiga...

متن کامل

A New Implicit Finite Difference Method for Solving Time Fractional Diffusion Equation

In this paper, a time fractional diffusion equation on a finite domain is con- sidered. The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first order time derivative by a fractional derivative of order 0 < a< 1 (in the Riemann-Liovill or Caputo sence). In equation that we consider the time fractional derivative is in...

متن کامل

Finite difference approximations for a fractional diffusion/anti-diffusion equation

A class of finite difference schemes for solving a fractional anti-diffusive equation, recently proposed by Andrew C. Fowler to describe the dynamics of dunes, is considered. Their linear stability is analyzed using the standard Von Neumann analysis: stability criteria are found and checked numerically. Moreover, we investigate the consistency and convergence of these schemes.

متن کامل

A second-order difference scheme for the time fractional substantial diffusion equation

In this work, a second-order approximation of the fractional substantial derivative is presented by considering a modified shifted substantial Grünwald formula and its asymptotic expansion. Moreover, the proposed approximation is applied to a fractional diffusion equation with fractional substantial derivative in time. With the use of the fourth-order compact scheme in space, we give a fully di...

متن کامل

Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation

In this paper, we consider the variable-order nonlinear fractional diffusion equation ∂u(x, t) ∂t = B(x, t)xR u(x, t) + f(u, x, t), where xR α(x,t) is a generalized Riesz fractional derivative of variable order α(x, t) (1 < α(x, t) ≤ 2) and the nonlinear reaction term f(u, x, t) satisfies the Lipschitz condition |f(u1, x, t) − f(u2, x, t)| ≤ L|u1 − u2|. A new explicit finite difference approxim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Applied Physics and Mathematics

سال: 2013

ISSN: 2010-362X

DOI: 10.7763/ijapm.2013.v3.212